如何提高 Python 的运行速度?



Python 目前得到了众多程序员的喜爱,但是还是遭到一些人的诟病,原由之一就是认为它运行缓慢。


其实某个特定程序(无论使用何种编程语言)的运行速度是快还是慢,在很大程度上取决于编写该程序的开发人员自身素质,以及他们编写优化而高效代码的能力。


Medium 上一位小哥就详细讲了讲如何让 Python 提速 30%,以此证明代码跑得慢不是 Python的问题,而是代码本身的问题。


01
时序分析



在开始进行任何优化之前,我们首先需要找出代码的哪些部分使整个程序变慢。有时程序的问题很明显,但是如果你一时不知道问题出在哪里,那么这里有一些可能的选项:


注意:这是我将用于演示的程序,它将进行指数计算


# slow_program.py

from decimal import *
def exp(x):
    getcontext().prec += 2
    i, lasts, s, fact, num = 0, 0, 1, 1, 1
    while s != lasts:
        lasts = s
        i += 1
        fact *= i
        num *= x
        s += num / fact
    getcontext().prec -= 2
    return +s

exp(Decimal(150))
exp(Decimal(400))
exp(Decimal(3000))


最简约的“配置文件”


首先,最简单最偷懒的方法——Unix时间命令。


~ $ time python3.8 slow_program.py

real  0m11,058s
user 0m11,050s
sys 0m0,008s


如果你只能知道整个程序的运行时间,这样就够了,但通常这还远远不够。


最详细的分析


另外一个指令是cProfile,但是它提供的信息过于详细了。


~ $ python3.8 -m cProfile -s time slow_program.py

         1297 function calls (1272 primitive calls) in 11.081 seconds

   Ordered by: internal time

   ncalls tottime percall cumtime percall filename:lineno(function)
        3   11.079    3.693   11.079    3.693 slow_program.py:4(exp)
        1    0.000    0.000    0.002    0.002 {built-in method _imp.create_dynamic}
      4/1    0.000    0.000   11.081   11.081 {built-in method builtins.exec}
        6    0.000    0.000    0.000    0.000 {built-in method __new__ of type object at 0x9d12c0}
        6    0.000    0.000    0.000    0.000 abc.py:132(__new__)
       23    0.000    0.000    0.000    0.000 _weakrefset.py:36(__init__)
      245    0.000    0.000    0.000    0.000 {built-in method builtins.getattr}
        2    0.000    0.000    0.000    0.000 {built-in method marshal.loads}
       10    0.000    0.000    0.000    0.000 <frozen importlib._bootstrap_external>:1233(find_spec)
      8/4    0.000    0.000    0.000    0.000 abc.py:196(__subclasscheck__)
       15    0.000    0.000    0.000    0.000 {built-in method posix.stat}
        6    0.000    0.000    0.000    0.000 {built-in method builtins.__build_class__}
        1    0.000    0.000    0.000    0.000 __init__.py:357(namedtuple)
       48    0.000    0.000    0.000    0.000 <frozen importlib._bootstrap_external>:57(_path_join)
       48    0.000    0.000    0.000    0.000 <frozen importlib._bootstrap_external>:59(<listcomp>)
        1    0.000    0.000   11.081   11.081 slow_program.py:1(<module>)


在这里,我们使用cProfile模块和time参数运行测试脚本,以便按内部时间(cumtime)对行进行排序。这给了我们很多信息,你在上面看到的行大约是实际输出的10%。由此可见,exp函数是罪魁祸首,现在我们可以更详细地了解时序和性能分析。


时序特定功能


现在我们知道了应当主要关注哪里,我们可能想对运行速度缓慢的函数计时,而不用测量其余的代码。为此,我们可以使用一个简单的装饰器:


def timeit_wrapper(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        start = time.perf_counter() # Alternatively, you can use time.process_time()
        func_return_val = func(*args, **kwargs)
        end = time.perf_counter()
        print('{0:<10}.{1:<8} : {2:<8}'.format(func.__module__, func.__name__, end - start))
        return func_return_val
    return wrapper


然后可以将此装饰器应用于待测功能,如下所示:


@timeit_wrapper

def exp(x):
    ...

print('{0:<10} {1:<8} {2:^8}'.format('module', 'function', 'time'))
exp(Decimal(150))
exp(Decimal(400))
exp(Decimal(3000))


这给出我们如下输出:


~ $ python3.8 slow_program.py
module function   time  
__main__ .exp      : 0.003267502994276583
__main__ .exp      : 0.038535295985639095
__main__ .exp      : 11.728486061969306


需要考虑的一件事是我们实际想要测量的时间。时间包提供time.perf_countertime.process_time两个函数。他们的区别在于perf_counter返回的绝对值,包括你的Python程序进程未运行时的时间,因此它可能会受到计算机负载的影响。另一方面,process_time仅返回用户时间(不包括系统时间),这仅是你的过程时间。


02
加速吧!



让Python程序运行得更快,这部分会很有趣!我不会展示可以解决你的性能问题的技巧和代码,更多地是关于构想和策略的,这些构想和策略在使用时可能会对性能产生巨大影响,在某些情况下,可以将速度提高30%。


使用内置数据类型


这一点很明显。内置数据类型非常快,尤其是与我们的自定义类型(例如树或链接列表)相比。这主要是因为内置程序是用C实现的,因此在使用Python进行编码时我们的速度实在无法与之匹敌。


使用lru_cache缓存/记忆


我已经在上一篇博客中展示了此内容,但我认为值得用简单的示例来重复它:


import functools
import time
# caching up to 12 different results
@functools.lru_cache(maxsize=12)
def slow_func(x):
    time.sleep(2) # Simulate long computation
    return x

slow_func(1) # ... waiting for 2 sec before getting result
slow_func(1) # already cached - result returned instantaneously!
slow_func(3) # ... waiting for 2 sec before getting result


上面的函数使用time.sleep模拟大量计算。第一次使用参数1调用时,它将等待2秒钟,然后才返回结果。再次调用时,结果已经被缓存,因此它将跳过函数的主体并立即返回结果。有关更多实际示例,请参见以前的博客文章。


使用局部变量


这与在每个作用域中查找变量的速度有关,因为它不只是使用局部变量还是全局变量。实际上,即使在函数的局部变量(最快),类级属性(例如self.name——较慢)和全局(例如,导入的函数)如time.time(最慢)之间,查找速度实际上也有所不同。


你可以通过使用看似不必要的分配来提高性能,如下所示:


# Example #1
class FastClass:
    def do_stuff(self):
        temp = self.value # this speeds up lookup in loop
        for i in range(10000):
            ... # Do something with `temp` here

# Example #2
import random
def fast_function():
    r = random.random
    for i in range(10000):
        print(r()) # calling `r()` here, is faster than global random.random()


使用函数


这似乎违反直觉,因为调用函数会将更多的东西放到堆栈上,并从函数返回中产生开销,但这与上一点有关。如果仅将整个代码放在一个文件中而不将其放入函数中,则由于全局变量,它的运行速度会慢得多。因此,你可以通过将整个代码包装在main函数中并调用一次来加速代码,如下所示:


def main():

    ... # All your previously global code

main()


不访问属性


可能会使你的程序变慢的另一件事是点运算符(.),它在获得对象属性时被使用。此运算符使用__getattribute__触发字典查找,这会在代码中产生额外的开销。那么,我们如何才能真正避免(限制)使用它呢?


# Slow:
import re
def slow_func():
    for i in range(10000):
        re.findall(regex, line) # Slow!

# Fast:
from re import findall
def fast_func():
    for i in range(10000):
        findall(regex, line) # Faster!


当心字符串


使用模数(%s).format()进行循环运行时,字符串操作可能会变得非常慢。我们有什么更好的选择?根据雷蒙德·海廷格(Raymond Hettinger)最近的推特,我们唯一应该使用的是f-string,它是最易读,最简洁且最快的方法。根据该推特,这是你可以使用的方法列表——最快到最慢:


f'{s} {t}'  # Fast!
s + ' ' + t
' '.join((s, t))
'%s %s' % (s, t)
'{} {}'.format(s, t)
Template('$s $t').substitute(s=s, t=t) # Slow!


生成器本质上并没有更快,因为它们被允许进行延迟计算,从而节省了内存而不是时间。但是,保存的内存可能会导致你的程序实际运行得更快。这是怎么做到的?如果你有一个很大的数据集,而没有使用生成器(迭代器),那么数据可能会溢出CPU L1缓存,这将大大减慢内存中值的查找速度。


在性能方面,非常重要的一点是CPU可以将正在处理的所有数据尽可能地保存在缓存中。你可以观看Raymond Hettingers的视频,他在其中提到了这些问题。

03
结论



优化的首要规则是不要优化。但是,如果确实需要,那么我希望上面这些技巧可以帮助你。但是,在优化代码时要小心,因为它可能最终使你的代码难以阅读,因此难以维护,这可能超过优化的好处。


代刷网装修代码

网上一些比较优秀的开源安全项目

获取更多资讯请加入交流群


    协助本站SEO优化一下,谢谢!
    关键词不能为空
评 论
更换验证码